Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY THIRD SEMESTER B.TECH DEGREE EXAMINATION(S), MAY 2019
 Course Code: CS203
 Course Name: SWITHCING THEORY AND LOGIC DESIGN

Max. Marks: 100
Duration: 3 Hours

PART A Answer all questions, each carries 3 marks.

 Marks1 List out any three advantages of digital systems over analogue systems.
2 Do the following number conversions:
(i) base-7 number 3456 to decimal (ii) base- 4 number 1213 to binary.

3 Show the K-map contents for the following Boolean functions: (i) $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=$ $(x+y)(y+z)(i i) F(x, y \cdot z)=\Pi(0,3,5,7)$.
4 Use De-Morgan's principle to find the complement of $\mathrm{A}+\mathrm{BC}^{\prime}\left(\mathrm{D}+\mathrm{EF}^{\prime}\right)^{\prime}$

PART B
 Answer any two full questions, each carries9 marks.

5 a) Do the following operations:
(i) Compute 1's complement of the binary number1101.01.
(ii) Compute 8's complement of the octal number 672.23.
(iii) Add base-16 numbers 1FE and EF1.
b) Assume that floating point numbers are represented in the following format. The mantissa is represented in sign-magnitude form. Magnitude of mantissa is adjusted such that the Most significant bit (MSB) is 1 and the (assumed) binary point is to the left of MSB.

Sign bit of Mantissa (1bit)	Exponent (6 bits signed-2's complement)	Mantissa (9 bits)

Represent the decimal number 6.25 in binary.
6 Use tabulation method to identify the simplified Boolean expression for the function, $\mathrm{F}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\Pi(1,3,4,6,9,11,12,14)$.
7 a) Use algebraic manipulation to convert,:
(i) $\quad \mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{xy}+\mathrm{y}+\mathrm{z}$ into canonical PoS.
(ii) $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=(\mathrm{x}+\mathrm{y}+\mathrm{z})\left(\mathrm{x}^{\prime}+\mathrm{y}+\mathrm{z}\right)\left(\mathrm{x}+\mathrm{y}^{\prime}+\mathrm{z}\right)(\mathrm{x}+\mathrm{z})$ into standard PoS.
b) Subtract the BCD number 1671 from BCD number 837 using 10's complement addition.

PART C
Answer all questions, each carries3 marks.
8 Show how a master-slave J-K flip-flop can be realized using NOR and AND gates.
9 Write the truth table of a 4×1 de-multiplexer and show the corresponding logic diagram.
10 Show how a full-subtractor can be implemented using a decoder.
11 Realize a half-adder using NAND gates.

PART D

Answer any two full questions, each carries 9 marks.
12 a) Implement the following Boolean functions using a 2×1 multiplexer and additional gates as needed: $\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(1,2,4,5)$.
b) Design a code converter with the following mapping specifications:

Input code	000	001	010	011	100	101	110	111
Output code	001	010	011	100	101	110	111	000

13 a) Given a 2-bit subtractor (block diagram), design a circuit with additional gates to use it as a comparator.
b) Design a sequential circuit for the following state diagram using T flip-flops.

14 Deduce the state table and state diagram that represents the behaviour of the following sequential circuit:

PART E

Answer any four full questions, each carries10 marks.

15 With the help of a neat diagram discuss how a serial adder can be designed using full-adder, shift registers and flip-flop.
16 Design a synchronous counter, using edge-triggered J-K flip-flops, that generates the binary sequence: $001,011,010,110,111,101,001,000,001, \ldots$

17 Draw a mod-16 ripple up-counter using J-Kflip-flops. Show how this counter can be converted to a mod-12 ripple counter.

18 a) How is static RAM different from dynamic RAM?
b) Write explanatory notes on read-only memory and read-write memory.
c) Assuming that both the T flip-flops in the diagram below are initially at state 1 , show the timing diagram for Q_{1} and Q_{2} with respect to the falling edge of the first four clock pulses.

19 a) Write a short note on PLA.
b) Implement the following Boolean functions using a 3-by-4-by-2 PLA.
(i) $\quad \mathrm{F} 1=\Sigma(1,4,5,6)$
(ii) $\quad \mathrm{F} 2=\Sigma(0,2,3,4,6,7)$

20 Briefly discuss the algorithms for floating point addition and floating point subtraction.

